6 research outputs found

    Requirements of the SALTY project

    Get PDF
    This document is the first external deliverable of the SALTY project (Self-Adaptive very Large disTributed sYstems), funded by the ANR under contract ANR-09-SEGI-012. It is the result of task 1.1 of the Work Package (WP) 1 : Requirements and Architecture. Its objective is to identify and collect requirements from use cases that are going to be developed in WP 4 (Use cases and Validation). Based on the study and classification of the use cases, requirements against the envisaged framework are then determined and organized in features. These features will aim at guide and control the advances in all work packages of the project. As a start, features are classified, briefly described and related scenarios in the defined use cases are pinpointed. In the following tasks and deliverables, these features will facilitate design by assigning priorities to them and defining success criteria at a finer grain as the project progresses. This report, as the first external document, has no dependency to any other external documents and serves as a reference to future external documents. As it has been built from the use cases studies that have been synthesized in two internal documents of the project, extracts from the two documents are made available as appendices (cf. appen- dices B and C)

    Comparing several candidate architectures variants : An Industrial Case Study

    No full text
    International audienceIn system and software engineering, the analysis of architectural variants is most of time irrational and manual. The most common approach for comparing variants is comparing results for each variant evaluation. Most advanced approaches available in architecture evaluation are suffering from three principal weaknesses: the absence of criteria elicitation method, no representation of real-life strategies and no explaination of the outcomes. This paper relates experiments of a MCDA tooled method addressing these weaknesses. The experimentation is supported by an industrial use case consisting in selecting the best platform for an handheld Software-defined Radio. Its architecture description is formalised with model-based design tools. As a result we conclude the experimented approach provides sharper results than classic approach on the class of decision problem exposed by avoiding false positives. This approach seems to be promising to improve the confidence in our Decision Analysis Report and their quality in terms of argumenting the reasons of a decision

    A Decision-making Process for Exploring Architectural Variants in Systems Engineering

    Get PDF
    International audienceIn systems engineering, practitioners shall explore numerous architectural alternatives until choosing the most adequate variant. The decision-making process is most of the time a manual, time-consuming, and error-prone activity. The exploration and justification of architectural solutions is ad-hoc and mainly consists in a series of tries and errors on the mod-eling assets. In this paper, we report on an industrial case study in which we apply variability modeling techniques to automate the assessment and comparison of several candidate architectures (variants). We first describe how we can use a model-based approach such as the Common Variability Language (CVL) to specify the architectural variability. We show that the selection of an architectural variant is a multi-criteria decision problem in which there are numerous interactions (veto, favor, complementary) between criteria. We present a tooled process for exploring architectural variants integrating both CVL and the MYRIAD method for assessing and comparing variants based on an explicit preference model coming from the elicitation of stakeholders' concerns. This solution allows understanding differences among variants and their satisfactions with respect to criteria. Beyond variant selection automation improvement, this experiment results highlight that the approach improves rationality in the assessment and provides decision arguments when selecting the preferred variants

    Tooling Support for Variability and Architectural Patterns in Systems Engineering

    Get PDF
    International audienceIn systems engineering, the deployment of software components is error-prone since numerous safety and security rules have to be preserved. Furthermore, many deployments on different heterogeneous platforms are possible. In this paper we present a technological solution to assist industrial practitioners in producing a safe and secure solution out of numerous architectural variants. First, we introduce a pattern technology that provides correct-by-construction deployment models through the reuse of modeling artifacts organized in a catalog. Second, we develop a variability solution , connected to the pattern technology and based on an extension of the common variability language, for supporting the synthesis of model-based architectural variants. This paper describes a live demonstration of an industrial effort seeking to bridge the gap between variability modeling and model-based systems engineering practices. We illustrate the tooling support with an industrial case study (a secure radio platform)

    Requirements of the SALTY project

    No full text
    This document is the first external deliverable of the SALTY project (Self-Adaptive very Large disTributed sYstems), funded by the ANR under contract ANR-09-SEGI-012. It is the result of task 1.1 of the Work Package (WP) 1 : Requirements and Architecture. Its objective is to identify and collect requirements from use cases that are going to be developed in WP 4 (Use cases and Validation). Based on the study and classification of the use cases, requirements against the envisaged framework are then determined and organized in features. These features will aim at guide and control the advances in all work packages of the project. As a start, features are classified, briefly described and related scenarios in the defined use cases are pinpointed. In the following tasks and deliverables, these features will facilitate design by assigning priorities to them and defining success criteria at a finer grain as the project progresses. This report, as the first external document, has no dependency to any other external documents and serves as a reference to future external documents. As it has been built from the use cases studies that have been synthesized in two internal documents of the project, extracts from the two documents are made available as appendices (cf. appen- dices B and C)

    Requirements of the SALTY project

    No full text
    This document is the first external deliverable of the SALTY project (Self-Adaptive very Large disTributed sYstems), funded by the ANR under contract ANR-09-SEGI-012. It is the result of task 1.1 of the Work Package (WP) 1 : Requirements and Architecture. Its objective is to identify and collect requirements from use cases that are going to be developed in WP 4 (Use cases and Validation). Based on the study and classification of the use cases, requirements against the envisaged framework are then determined and organized in features. These features will aim at guide and control the advances in all work packages of the project. As a start, features are classified, briefly described and related scenarios in the defined use cases are pinpointed. In the following tasks and deliverables, these features will facilitate design by assigning priorities to them and defining success criteria at a finer grain as the project progresses. This report, as the first external document, has no dependency to any other external documents and serves as a reference to future external documents. As it has been built from the use cases studies that have been synthesized in two internal documents of the project, extracts from the two documents are made available as appendices (cf. appen- dices B and C)
    corecore